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Abstract

Functions and lines used for visualization purposes can be uni_ed from physical and numerical viewpoints[ The
physical uni_cation represents an important step\ in order to make common the procedure used to obtain the di}erential
equation from which are obtained the functions whose contour plots "lines# are used for visualization purposes[ From
the numerical viewpoint\ the uni_cation results are also very interesting\ making possible the evaluation of the functions|
_elds by using the same numerical procedures and code routines as for the primitive conserved variables[ For domains
involving media with very di}erent properties\ the harmonic mean practice has been shown to be the most attractive
procedure to evaluate the interfacial di}usion coe.cient\ both for the primitive conserved variables and for the functions
introduced for visualization purposes[ Þ 0887 Published by Elsevier Science Ltd[ All rights reserved[

Nomenclature

A area
A\ B mesh points
B wall thickness
C concentration
cp constant pressure speci_c heat
D mass di}usion coe.cient
` gravitational acceleration
H heatfunction
i control volume interface
i\ j Cartesian unit vectors
J transport ~ux vector
k thermal conductivity
L length
Le Lewis number
M massfunction
N buoyancy ratio
n outward unit normal
p pressure
Pe Pe�clet umber
Pr Prandtl number
Ra Rayleigh number

� Corresponding author[ Tel[] 99 240 23 269718^ fax] 99 240
23 269842^ e!mail] v costaÝmec[ua[pt

Rc thermal conductivity ratio
Rd mass di}usion coe.cient ratio
s segment
S source term
T temperature
u\ v velocity components
V velocity
x\ y Cartesian co!ordinates[

Greek symbols
a thermal di}usivity
b volumetric expansion coe.cient
G generic di}usion coe.cient
D distance or di}erence value
o constant small number
m dynamic viscosity
n kinematic viscosity
r density
f generic intensive "speci_c# property
F generic function related to the f property
c stream function[

Subscripts
C cold wall or mass e}ects
i interface value or referring to i species
f ~uid medium
H higher value
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ref reference value
T referring to thermal e}ects
w wall medium
9 reference value "lower value#
� dimensionless[

0[ Introduction

Streamfunction and streamlines are very e.cient and
largely used tools to visualize two!dimensional ~ow _elds
ð0Ł[ In the study of conduction heat transfer\ the use of
the heat ~ux lines is well established ð1Ł[ In the _eld of
convection heat transfer\ the heatfunction and heatline
concepts were introduced by Kimura and Bejan ð2Ł\ and
also by Bejan ð3Ł in the last decade only[ Examples of
heatline applications can be found in some recent litera!
ture ð2Ð04Ł[ A natural extension was made for the _eld
of convective mass transfer\ by introducing the massfunc!
tion and massline concepts\ which can be found also in
some recent literature ð04Ð06Ł[ From a physical view!
point\ the used functions are usually treated individually\
each requiring a particular procedure[ The same is also
valid from a numerical viewpoint\ the functions used for
visualization being obtained using special procedures and
routines\ other than those used for the calculation of the
primitive _elds[

The main objective of this work is to present a general
physical and numerical treatment for functions and lines
used for visualization purposes in two!dimensional situ!
ations[ From the numerical viewpoint\ it is shown that
the same procedures and code routines involved in the
calculation of the primitive _elds can also be used in
the evaluation of the functions _elds\ even on situations
involving conjugated transfer phenomena[ It is assumed
that such functions are used for visualization purposes
only\ their _elds being evaluated once the _elds of the
primitive variables velocity\ pressure\ temperature and
concentration are known[

1[ Physical modeling

The usual two!dimensional heat\ mass and related
transfer phenomena are described by partial di}erential
equations\ which can be written in the general con!
servative form ð07Ł
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whose solutions can be obtained by using many powerful
numerical methods available[ f is the speci_c transported
variable\ and some particular meanings of f are pre!

Table 0
Di}usion coe.cients and source terms for each individual f in
equation "0#

Physical principle f Gf Sf

Overall mass conservation 0 9 9
x momentum equation u m −1p:1x¦[ [ [
y momentum equation v m −1p:1y¦[ [ [
Energy conservation T k:cp 9
i species mass conservation Ci rDi 9

sented in Table 0\ special emphasis being given to the
particular di}usion coe.cients and source terms[

If the ~uid ~ow subsides "stagnant ~uid or solid me!
dium with u � v � 9#\ the corresponding di}usion situ!
ation is described by the right hand side of equation "0#\
k:cp and rDi being\ in that case\ the heat and i species
mass di}usion coe.cients over the involved medium[ The
global mass conservation "f � 0#\ with null source term
and di}usion coe.cient\ is valid for any medium if
nuclear reactions are not present\ as is the usual case[
By their turn\ the x and y momentum equations are of
application if the ~uid ~ow subsists\ and their source
terms can include any body force "by unit mass# in
addition to the negative of the pressure gradient com!
ponents\ such as buoyancy terms[ The presented energy
equation is valid if there are no source or sink terms\ and
the i species mass conservation equation is valid if there
is no i species production or destruction "no chemical
reactions involving i species#[ The general uni_cation pro!
cedure to be developed applies only to di}erential equa!
tions\ in the form of equation "0#\ with no source terms[
If the di}erential equation for a given variable presents
a non!zero source term\ the developed visualization tools
are of no value for such a variable[

Equation "0#\ with no source term\ can be written as

1
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noting that the terms involving f9 vanish by invoking the
di}erential mass conservation equation\ that is\
ð1:1x"ru#¦1:1y"rv#Łf9 � 9[ The meaning of f9\ as well
as the reason for its introduction\ will be explained below[

In equation "1# the Jf ~ux components are identi_ed
as

Jf\x � ru"f−f9#−Gf

1f

1x

Jf\y � rv"f−f9#−Gf

1f

1y
[ "2#

De_ning now the function F"x\ y#\ through its _rst order
derivatives\ as
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equation "0# can be obtained by equating the second
order crossed derivatives of F\ being implicitly assumed
that F"x\ y# is a continuous function to its second order
derivatives[

The total di}erential of F"x\ y# is obtained as

dF �
1F
1x

dx¦
1F
1y

dy � −Jf\y dx¦Jf\x dy\ "4#

that is\ dF � Jf = ndA\ with dA � ds×0\ the ds×0 prod!
uct being presented to emphasize that we are considering
the two!dimensional situation of Fig[ 0 with a unit depth[
If dF � 9\ it means that there is not any f ~ow crossing
segment ds in Fig[ 0\ that is\ a F constant line is a non!
crossed line by the f ~ow\ being thus a line that is tangent
to the ~ow vector[ There are such constant F lines that
are of major importance for visualization purposes[

It should be noted that a di}erence DF between the F
values at two points represents the f ~ow that\ by unit
depth\ crosses the segment linking these points\ being
thus specially instructive the streets comprised between
two constant F lines\ in which well bordered f ~ows are
transferred[

The f9 value is introduced by the fact that\ usually\
any variable other than the pressure or the velocity com!
ponents is made dimensionless as f� �"f−f9#:
"fH−f9#\ fH and f9 being\ respectively\ the higher and
lower values of f in the domain ð04Ł[ For the continuity
equation\ which involves only the velocity components
that are made dimensionless as "u�\ v�# �"u\ v#:Vref\ the
f9 value is not taken as f9 � 0 but f9 � 9[ Thus\ the _rst
order derivatives of F can be made dimensionless\ for a
constant property situation\ as

1F�
1y�

� Pef"u�f�#−
1f�
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1x�

� Pef"v�f�#−
1f�
1y�

\ "5#

Fig[ 0[ Elementary segment ds � zdx1¦dy1 crossed by the ~ux
Jf[

where Pef � rVrefL:Gf\ L being the characteristic length\
and F� � F:Gf"fH−f9#[ For f � 0\ the continuity equa!
tion\ F � c\ the streamfunction\ the _rst order deriva!
tives can be made dimensionless as 1c�:1y� � u� and
−1c�:1x� � v�\ with c� de_ned as c� � c:rVrefL[ In all
that follows\ it will be considered that Gf � o for the
continuity equation\ o being a constant small number[

Assuming now that f is a continuous function to its
second order derivatives\ the equality of its second order
cross derivatives can be established through the
expressions obtained from the right hand sides present in
equation "3#\ leading to the equation
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This is the second order partial di}erential equation from
which it will be evaluated the F _eld\ for any particular
corresponding meaning of f[ It is an equation cor!
responding to a conduction!type problem\ with source
term if the ~uid ~ow subsists and without source term if
the ~uid ~ow subsides\ with the di}usion coe.cient for
F verifying

GF � 0:Gf\ "7#

which is maintained within parenthesis in equation "6#
because it is\ in the general case\ a variable and not a
constant[ To the authors| knowledge\ this is the _rst
formulation considering a variable di}usion coe.cient
for F[ For f � 0\ f9 � 9 and Gf � o\ a small constant
number\ one obtains the well!known partial di}erential
equation for the streamfunction ð0Ł[ The particular mean!
ing of F for some usual situations is summarized in
Table 1[

Equation "6# is a conduction!type equation and\ for
each particular F\ its solution can be obtained following
the same procedures as for f\ once the boundary con!
ditions are established[ From a physical viewpoint\ we
have thus a uni_ed treatment for the functions used for
visualization purposes[

The F function is de_ned through its _rst order deriva!
tives\ equation "3#\ being thus only important di}erences
on the F values but not the F level[ This relative behavior
is similar to that of the pressure when evaluating incom!
pressible ~uid ~ows\ with a total freedom to choose any
suitable reference point[ The F _eld is evaluated once its
corresponding f _eld is known\ the F values over the
boundaries being obtained by integrating the adequate F
derivative present in equation "3# through the bound!
aries[ Extending this procedure to all the domain bound!
aries\ starting from any suitable reference point\ we have
boundary conditions of _rst kind for F over all the
domain boundary[ Over the vertical "along y# boundaries
one obtains
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Table 1
Coupling of f and F for some usual situations

Physical principle f F F contour plots

Overall mass conservation 0 c*Streamfunction Streamlines
Energy conservation T H*Heatfunction Heatlines
i species mass conservation Ci Mi*i species massfunction i species masslines

F"xref\ y# � F"xref\ yref#¦g
y

yref
$ru"f−f9#−Gf

1f

1x% dy\

"8a#

and over the horizontal "along x# boundaries the cor!
responding integration is

F"x\ yref# � F"xref\ yref#−g
x

xref
$rv"f−f9#−Gf

1f

1y% dx[

"8b#

2[ Numerical modeling

From a numerical viewpoint\ equation "6# is a con!
duction!type equation for the F variable\ with or without
source term depending if the ~uid ~ow subsists or not[
Its solution\ for each particular meaning of F\ is easier
than that of its corresponding f[ The most important
aspect from the uni_cation viewpoint is that the same
numerical procedures and routines used for the primitive
variables f can be used in order to evaluate the cor!
responding F _elds[

The di}usion coe.cient for F can be treated through
any suitable practice similar to that used for the f

di}usion coe.cient[ However\ if a control volume _nite
di}erence method is used\ the harmonic mean practice
ð07Ł shows to be the most attractive one[ At this point\
it should be noted that if we are evaluating the F _eld by
using a control volume method\ we are assuming that F
is a conserved variable\ which is not necessarily the case[
This is not of major importance\ due to the fact that the
obtained information is used specially for visualization
purposes\ with an essentially qualitative value[ The
referred harmonic mean practice is the exact one for one!
dimensional situations\ and it is the most suggestive one
for the situations with sharp variations in the involved
di}usion coe.cients\ as is the case of conjugated trans!
port phenomena with a domain composed by contiguous
and very di}erent materials[

Considering the one!dimensional situation sketched in
Fig[ 1\ representing a conduction situation\ the interface
di}usion coe.cients\ obtained by using the harmonic
mean practice\ are

Fig[ 1[ Numerical cells to apply the harmonic mean practice[

Gf\i �
Gf\AGf\B"DA¦DB#
Gf\ADB¦Gf\BDA

GF\i �
"DA¦DB#

Gf\ADA¦Gf\BDB

"09#

and the corresponding f and F interface values are

fi �
"Gf\ADB#fA¦"Gf\BDA#fB

Gf\ADB¦Gf\BDA

Fi �
"Gf\BDB#FA¦"Gf\ADA#FB

Gf\BDB¦Gf\ADA

[ "00#

The limit situations for Gf\i\ GF\i\ fi and Fi corresponding
to Gf : 9¦ or Gf : ¦� are shown in Table 2[

From Table 2\ if Gf\A : 9¦ "material A with null
di}usivity# one obtains Gf\i � 9\ that is\ there is no
di}usion at the interface\ and any constant f line is
normal to the interface[ By this turn\ the f value at the
interface is this corresponding to node B[ Considering
now the situation of Gf\A : ¦�\ being thus A a f � fA

constant layer\ one _nds that the di}usion coe.cient at
the interface is dominated by Gf\B\ and any constant f

line is parallel to the interface[ The f value at the interface
is fA in this case[ Similar results can be obtained analysing
the Gf\B limit situations[ It should be stressed that the
situation of Gf\A : 9¦ and Gf\B : 9¦ is of no sense\
because the layers A and B are not in communication
through any transfer phenomena in this case\ as well as
the situation of Gf\A :¦� and Gf\B :¦�\ which corres!
ponds to a constant f value over both layers A and B[

The foregoing limit situations are analysed now from
the viewpoint of the F function[ If Gf\A : 9¦\ that is\
GF\A : ¦�\ one _nds that the di}usion coe.cient GF\i

at the interface is dominated by 0:Gf\B\ layer A is a F � FA

constant region\ and any constant F line is parallel to the
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Fig[ 2[ Streamlines "top#\ and heatlines "——# and masslines "**# "bottom# for combined buoyancy e}ects and N � 9[4] "a#
Rc � Rd � 9[0 "Dc

�
� 9[677^ DH

�
� 9[344^ DM

�
� 9[344#^ "b# Rc � Rd � 9[4 "Dc

�
� 0[026^ DH

�
� 9[654^ DM

�
� 9[650#^ and "c#

Rc � Rd � 0[9 "Dc
�

� 0[148^ DH
�

� 9[785^ DM
�

� 9[777#[

interface[ The F value at the interface is FA in this case[
For the situation of Gf\A : ¦�\ that is\ GF\A : 9¦\ the
di}usion coe.cient GF\i at the interface is null\ and any
constant F line is normal to the interface[ The F value at
the interface is FB in this case[ Once again\ similar results
can be obtained analysing Gf\B limit situations[

As we are analysing the near boundary region con!
sidering a simple conduction model\ we obtain a result
similar to that obtained when using the heat ~ux lines on
single conduction problems\ involving isotropic media\
the heatlines being normal to the isothermals[

It should be noted that the harmonic mean practice is
used\ but the inverse of the harmonic mean is not the
harmonic mean of the inverse\ as it can be easily observed
from Table 2[ Thus\ the corresponding di}usion
coe.cients for f and F must be obtained by using the
harmonic mean practice\ from the respective nodal
di}usion coe.cients\ "Gf\A\ Gf\B# and "GF\A\ GF\B#[

The overall mass transfer equation\ f � 0\ is only a
normal case to apply the here proposed uni_ed
procedure[ For a domain delimited by some solid imper!
meable walls\ we have u � v � 9 and Gf : 9¦\ that is
GF : ¦� over such walls[ The simplest solution of equa!
tion "6# for f � 0 over the solid walls "with null source
term# is F � Fwall � constant[ The wall as well as the ~uid
layer close to the wall is a F � Fwall constant region\ being

any constant F line parallel to the ~uid!solid interface[
In this case\ f � 0\ we have F � c\ the streamfunction\
which is e}ectively parallel to any "perfectly# imper!
meable boundary\ being usually considered cwall � 9[
Over the ~uid ~owing\ the source term of equation "6# is
not null\ the di}usion coe.cient can be eliminated from
the di}erential equation as it is constant\ 0:Gf � 0:o\ and
the c solution corresponding to the ~owing ~uid is con!
jugated with the c � cwall � 9 distribution over the con!
_ning solid walls[

3[ Illustrations

In order to show the capabilities of the proposed uni!
fying procedure\ some results concerning the double!
di}usive natural convection in a square enclosure with
heat and mass di}usive walls are presented ð08Ł[ It is a
square enclosure with L:B � 19\ B being the wall thick!
ness\ _lled with moist air "Pr � n:a � 9[6\
Le � a:D � 9[7# and RaT � gbTL

2"TH−TC#:na � 094[
In the vertical direction\ it is assumed a vertical stack

of equal square enclosures separated by walls of thickness
B\ and a periodic spatial variation in this direction[ The
remaining important parameters are the buoyancy ratio
N � bC"CH−CC#:bT"TH−TC#\ the heat and mass
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Fig[ 3[ Streamlines "left#\ heatlines "center# and masslines "right# for opposed buoyancy e}ects and N � 9[4] "a# Rc � Rd � 9[0
"Dc

�
� 9[374^ DH

�
� 9[299^ DM

�
� 9[299#^ and "b# Rc � Rd � 0[9 "Dc

�
� 9[672^ DH

�
� 9[488^ DM

�
� 9[483#[

Table 2
Limiting situations resulting from the use of the harmonic mean practice

Limit situation Gf\i GF\i fi Fi

Gf\A : 9¦ 9
DA¦DB

DB

0
Gf\B

fB FA

Gf\A : ¦� Gf\B

DA¦DB

DB

9 fA FB

Gf\B : 9¦ 9
DA¦DB

DA

0
Gf\A

fA FB

Gf\B : ¦� Gf\A

DA¦DB

DA

9 fB FA

di}usion coe.cient ratios Rc � kw:kf and
Rd �"rD#w:"r9D#f\ and the combined or opposed heat
and mass buoyancy e}ects[ The thermal and mass buoy!
ancy e}ects are modeled through a Boussinesq type
approach\ the density being a constant r � r9 except on
the vertical velocity source term\ where it is a function of
both the temperature and moisture concentration _elds[
The involved functions for visualization purposes are the
streamfunction\ the heatfunction\ and the massfunction\
the later relative to the humidity present in the moist air
_lling the cavity[

Analysis of Figs 2 "combined buoyancy e}ects# and 3
"opposed buoyancy e}ects# shows all the potential of the
unifying procedure proposed in this work\ together with
the use of the harmonic mean practice for the evaluation
of the interface di}usion coe.cients[

4[ Conclusions

As the main conclusion of this work\ the heat and mass
functions conjugated problems\ as well as the stream!
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function problem\ can be derived using a common
physical procedure\ and such problems are formally simi!
lar[ If the physical uni_cation is interesting\ another not
less important conclusion is that these problems can be
numerically solved by using the same procedures and
routines used when solving for the primitive conserved
variables\ including the harmonic mean practice for the
di}usion coe.cients[ By their own turn\ the lines
obtained as contour plots of such functions show that
they are an e}ective way to visualize the involved trans!
port phenomena\ instead of the intensively used contour
plots of the primitive variables such as pressure\ tem!
perature and concentration[ Contour plots of the primi!
tive variables are important to visualize the levels of the
variables through the domain\ but not to visualize the
involved transport phenomena[ Contrarily\ contour plots
of the introduced F functions are important to visualize
the involved transport phenomena\ but not the level of
the primitive variables through the domain[
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